Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.082
Filtrar
1.
Sci Rep ; 14(1): 8715, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622248

RESUMO

Metataxonomic studies of ecosystem microbiotas require the simultaneous processing of samples with contrasting physical and biochemical traits. However, there are no published studies of comparisons of different DNA extraction kits to characterize the microbiotas of the main components of terrestrial ecosystems. Here, and to our knowledge for the first time, five DNA extraction kits were used to investigate the composition and diversity of the microbiota of a subset of samples typically studied in terrestrial ecosystems such as bulk soil, rhizosphere soil, invertebrate taxa and mammalian feces. DNA extraction kit was associated with changes in the relative abundance of hundreds of ASVs, in the same samples, resulting in significant differences in alpha and beta diversity estimates of their microbiotas. Importantly, the impact of DNA extraction kit on sample diversity varies according to sample type, with mammalian feces and soil samples showing the most and least consistent diversity estimates across DNA extraction kits, respectively. We show that the MACHEREY-NAGEL NucleoSpin® Soil kit was associated with the highest alpha diversity estimates, providing the highest contribution to the overall sample diversity, as indicated by comparisons with computationally assembled reference communities, and is recommended to be used for any large-scale microbiota study of terrestrial ecosystems.


Assuntos
Ecossistema , Microbiota , Animais , DNA Bacteriano/genética , DNA/genética , Fezes , Solo , RNA Ribossômico 16S/genética , Mamíferos/genética
2.
Methods Mol Biol ; 2794: 293-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630238

RESUMO

Droplet digital PCR (ddPCR) is an emerging method for the absolute quantification of PCR products, and it can detect DNA copy numbers accurately. It analyzes the end-point absolute fluorescence signals of the PCR-positive droplets and calculates the target concentration. EvaGreen is a nonspecific double-stranded DNA-binding fluorescent dye, and the ddPCR system also supports assays using this cost-effective hydrolysis probe. Here, we describe a simple method of quantification for DNA copy numbers using the EvaGreen single-color fluorescent design.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Corantes Fluorescentes , Reação em Cadeia da Polimerase , DNA/genética
3.
ACS Nano ; 18(15): 10454-10463, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572806

RESUMO

DNA isothermal amplification techniques have been applied extensively for evaluating nucleic acid inputs but cannot be implemented directly on other types of biomolecules. In this work, we designed a proximity activation mechanism that converts protein input into DNA barcodes for the DNA exponential amplification reaction, which we termed PEAR. Several design parameters were identified and experimentally verified, which included the choice of enzymes, sequences of proximity probes and template strand via the NUPACK design tool, and the implementation of a hairpin lock on the proximity probe structure. Our PEAR system was surprisingly more robust against nonspecific DNA amplification, which is a major challenge faced in existing formats of the DNA-based exponential amplification reaction. The as-designed PEAR exhibited good target responsiveness for three protein models with a dynamic range of 4-5 orders of magnitude down to femtomolar input concentration. Overall, our proposed protein-to-DNA converter module led to the development of a stable and robust configuration of the DNA exponential amplification reaction to achieve high signal gain. We foresee this enabling the use of protein inputs for more complex molecular evaluation as well as ultrasensitive protein detection.


Assuntos
Técnicas Biossensoriais , DNA , DNA/genética , DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
4.
Phys Chem Chem Phys ; 26(15): 11854-11866, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567416

RESUMO

With the advent of the post-Moore's Law era, the development of traditional silicon-based computers has reached its limit, and there is an urgent need to develop new computing technologies to meet the needs of science, technology, and daily life. Due to its super-strong parallel computing capability and outstanding data storage capacity, DNA computing has become an important branch and hot research topic of new computer technology. DNA enzyme-free hybridization reaction technology is widely used in DNA computing, showing excellent performance in computing power and information processing. Studies have shown that DNA molecules not only have the computing function of electronic devices, but also exhibit certain human brain-like functions. In the field of artificial intelligence, activation functions play an important role as they enable artificial intelligence systems to fit and predict non-linear and complex variable relationships. Due to the difficulty of implementing activation functions in DNA computing, DNA circuits cannot easily achieve all the functions of artificial intelligence. DNA circuits need to rely on electronic computers to complete the training and learning process. Based on the parallel computing characteristics of DNA computing and the kinetic features of DNA molecule displacement reactions, this paper proposes a new activation function. This activation function can not only be easily implemented by DNA enzyme-free hybridization reaction reactions, but also has good nesting properties in DNA circuits, and can be cascaded with other DNA reactions to form a complete DNA circuit. This paper not only provides the mathematical analysis of the proposed activation function, but also provides a detailed analysis of its kinetic features. The activation function is then nested into a nonlinear neural network for DNA computing. This system is capable of fitting and predicting a certain nonlinear function.


Assuntos
Inteligência Artificial , Computadores Moleculares , Humanos , Computadores , Redes Neurais de Computação , DNA/genética
5.
Curr Protoc ; 4(4): e1009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572677

RESUMO

Expanding the genetic alphabet enhances DNA recombinant technologies by introducing unnatural base pairs (UBPs) beyond the standard A-T and G-C pairs, leading to biomaterials with novel and increased functionalities. Recent developments include UBPs that effectively function as a third base pair in replication, transcription, and/or translation processes. One such UBP, Ds-Px, demonstrates extremely high specificity in replication. Chemically synthesized DNA fragments containing Ds bases are amplified by PCR with the 5'-triphosphates of Ds and Px deoxyribonucleosides (dDsTP and dPxTP). The Ds-Px pair system has applications in enhanced DNA data storage, generation of high-affinity DNA aptamers, and incorporation of functional elements into RNA through transcription. This protocol describes the synthesis of the amidite derivative of Ds (dDs amidite), the triphosphate dDsTP, and the diol-modified dPxTP (Diol-dPxTP) for PCR amplifications involving the Ds-Px pair. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of Ds deoxyribonucleoside (dDs) Basic Protocol 2: Synthesis of dDs amidite Basic Protocol 3: Synthesis of dDs triphosphate (dDsTP) Basic Protocol 4: Synthesis of Pn deoxyribonucleoside (4-iodo-dPn) Basic Protocol 5: Synthesis of acetyl-protected diol-modified Px deoxyribonucleoside (Diol-dPx) Basic Protocol 6: Synthesis of Diol-dPx triphosphate (Diol-dPxTP) Basic Protocol 7: Purification of triphosphates Support Protocol 1: Synthesis of Hoffer's chlorosugar Support Protocol 2: Preparation of 0.5 M pyrophosphate in DMF Support Protocol 3: Preparation of 2 M TEAB buffer.


Assuntos
Aptâmeros de Nucleotídeos , DNA , Polifosfatos , Pirróis , Reação em Cadeia da Polimerase/métodos , Pareamento de Bases , DNA/genética , DNA/análise , Piridinas , Aptâmeros de Nucleotídeos/genética
6.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , 60535 , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
7.
Sci Adv ; 10(15): eadm8167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598632

RESUMO

Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.


Assuntos
Núcleo Celular , Cromatina , Cromatina/genética , Núcleo Celular/genética , Cromossomos/genética , DNA/genética , Genoma
8.
Sci Rep ; 14(1): 7988, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580715

RESUMO

In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes). The same barcode is used to tag the reads derived from the same long DNA fragment within a range of up to 200 kilobases (kb), generating linked-reads. This strategy can be used to phase an entire genome. Here, we introduce a TELL-Seq protocol developed for targeted applications, enabling the phasing of enriched loci of varying sizes, purity levels, and heterozygosity. To validate this protocol, we phased 2-200 kb loci enriched with different methods: CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis for the longest fragments, CRISPR/Cas9-mediated protection from exonuclease digestion for mid-size fragments, and long PCR for the shortest fragments. All selected loci have known clinical relevance: BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA. Collectively, the analyses show that TELL-Seq can accurately phase 2-200 kb targets using a short-read sequencer.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Genoma Humano
9.
Biochem Biophys Res Commun ; 710: 149856, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583234

RESUMO

The topological properties of DNA have long been a focal point in biophysics. In the 1970s, White proposed that the topology of closed DNA double helix follows White's formula: Lk=Wr+Tw. However, there has been controversy in the calculation of DNA twisting number, partly due to discrepancies in the definition of torsion in differential geometry. In this paper, we delved into a detailed study of torsion, revealing that the calculation of DNA twisting number should use the curve's geodesic torsion. Furthermore, we found that the discrepancy in DNA twisting numbers calculated using different torsion is N. This study elucidated the impact of torsion on the calculation of DNA twisting numbers, aiming to resolve controversies in the calculation of DNA topology and provided accurate computational methods and theoretical foundations for related research.


Assuntos
DNA , Conformação de Ácido Nucleico , DNA/genética , Matemática , Biofísica
10.
Sci Adv ; 10(15): eadk8791, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608016

RESUMO

Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.


Assuntos
DNA Polimerase Dirigida por RNA , RNA , DNA Complementar/genética , RNA/genética , DNA Polimerase Dirigida por RNA/genética , DNA/genética , DNA de Cadeia Simples
11.
Sci Rep ; 14(1): 8885, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632301

RESUMO

The use of environmental DNA (eDNA) analysis has demonstrated notable efficacy in detecting the existence of freshwater species, including those that are endangered or uncommon. This application holds significant potential for enhancing environmental monitoring and management efforts. However, the efficacy of eDNA-based detection relies on several factors. In this study, we assessed the impact of rainfall on the detection of eDNA for the Siamese bat catfish (Oreoglanis siamensis). Quantitative polymerase chain reaction (qPCR) analysis indicated that samples from days with average rainfall exceeding 35 mm (classified as heavy and very heavy rain) yielded negative results. While eDNA detection remains feasible on light or moderate rainy days, a noteworthy reduction in eDNA concentration and qPCR-positive likelihood was observed. Analysis across 12 sampling sites established a statistically significant negative relationship (p < 0.001) between eDNA detection and rainfall. Specifically, for each 1 mm increase in rainfall, there was an observed drop in eDNA concentration of 0.19 copies/mL (±0.14). The findings of this study provide definitive evidence that precipitation has a significant impact on the detection of eDNA in Siamese bat catfish. However, in the case of adverse weather conditions occurring on the day of sampling, our research indicates that it is acceptable to continue with the task, as long as the rainfall is not heavy or very heavy. To enhance the effectiveness of an eDNA survey, it is crucial to consider many factors related to climatic conditions. The aforementioned factor holds significant importance not only for the specific species under scrutiny but also for the broader dynamics of the climate.


Assuntos
Quirópteros , DNA Ambiental , Animais , DNA Ambiental/genética , DNA/genética , Quirópteros/genética , Água Doce , Monitoramento Ambiental/métodos
12.
Mol Cell ; 84(8): 1398-1400, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640891

RESUMO

The DNA topological challenges generated by cellular manipulation of extremely long DNA fibers remain poorly understood. In this issue of Molecular Cell, Hildebrand et al.1 describe how mitotic chromosomes are self entangled and that disentanglement requires TOP2 activity in late mitosis.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , DNA/genética , Mitose/genética
13.
Commun Biol ; 7(1): 441, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600351

RESUMO

ABTRACT: Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.


Assuntos
Ácidos Nucleicos Livres , Ácidos Nucleicos Livres/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Apoptose/genética , DNA/genética , Linhagem Celular
14.
Anal Chim Acta ; 1304: 342553, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637054

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV) remains a major worldwide health problem. Nowadays, many methods have been developed for quantitative detecting human immunodeficiency virus DNA (HIV-DNA), such as fluorescence and colorimetry. However, these methods still have the disadvantages of being expensive and requiring professional technicians. Early diagnosis of pathogens is increasingly dependent on portable instruments and simple point-of-care testing (POCT). Therefore, it is meaningful and necessary to develop portable and cheap methods for detecting disease markers. RESULTS: In this work, a label-free chemiluminescence (CL) method was developed for detecting HIV-DNA via a handheld luminometer. To achieve label-free target detection, the CL catalyst, G-triplex-hemin DNAzyme (G3-hemin DNAzyme), was in-situ assembled in the presence of HIV-DNA. For improving sensitivity, HIV-DNA induced the cyclic strand displacement reaction (SDR), which can form three G3-hemin DNAzymes in one cycle. So, the chemiluminescence reaction between luminol and H2O2 was highly effectively catalyzed, and the CL intensity was linearly related with the concentration of HIV-DNA in the range of 0.05-10 nM with a detection limit of 29.0 pM. Due to the high specificity of hairpin DNA, single-base mismatch can be discriminated, which ensured the specific detection of HIV-DNA. SIGNIFICANCE: In-situ formation of G3-hemin DNAzyme led to label-free and selective detection without complex synthesis and functionalization. Therefore, it offers a cheap, selective, sensitive and portable method for detecting disease-related genes, which is promising for POCT of clinical diagnosis in resource-limited settings.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Infecções por HIV , Humanos , DNA Catalítico/metabolismo , Hemina , Peróxido de Hidrogênio , Medições Luminescentes/métodos , DNA/genética , Infecções por HIV/diagnóstico , Técnicas Biossensoriais/métodos , Limite de Detecção
15.
Sci Rep ; 14(1): 7731, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565928

RESUMO

Data storage in DNA has recently emerged as a promising archival solution, offering space-efficient and long-lasting digital storage solutions. Recent studies suggest leveraging the inherent redundancy of synthesis and sequencing technologies by using composite DNA alphabets. A major challenge of this approach involves the noisy inference process, obstructing large composite alphabets. This paper introduces a novel approach for DNA-based data storage, offering, in some implementations, a 6.5-fold increase in logical density over standard DNA-based storage systems, with near-zero reconstruction error. Combinatorial DNA encoding uses a set of clearly distinguishable DNA shortmers to construct large combinatorial alphabets, where each letter consists of a subset of shortmers. We formally define various combinatorial encoding schemes and investigate their theoretical properties. These include information density and reconstruction probabilities, as well as required synthesis and sequencing multiplicities. We then propose an end-to-end design for a combinatorial DNA-based data storage system, including encoding schemes, two-dimensional (2D) error correction codes, and reconstruction algorithms, under different error regimes. We performed simulations and show, for example, that the use of 2D Reed-Solomon error correction has significantly improved reconstruction rates. We validated our approach by constructing two combinatorial sequences using Gibson assembly, imitating a 4-cycle combinatorial synthesis process. We confirmed the successful reconstruction, and established the robustness of our approach for different error types. Subsampling experiments supported the important role of sampling rate and its effect on the overall performance. Our work demonstrates the potential of combinatorial shortmer encoding for DNA-based data storage and describes some theoretical research questions and technical challenges. Combining combinatorial principles with error-correcting strategies, and investing in the development of DNA synthesis technologies that efficiently support combinatorial synthesis, can pave the way to efficient, error-resilient DNA-based storage solutions.


Assuntos
Replicação do DNA , DNA , Análise de Sequência de DNA/métodos , DNA/genética , Algoritmos , Armazenamento e Recuperação da Informação
16.
Environ Mol Mutagen ; 65 Suppl 1: 4-8, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619433

RESUMO

This Special Issue (SI) of Environmental and Molecular Mutagenesis (EMM), entitled "Inspiring Basic and Applied Research in Genome Integrity Mechanisms," is to update the community on recent findings and advances on genome integrity mechanisms with emphasis on their importance for basic and environmental health sciences. This SI includes two research articles, one brief research communication, and four reviews that highlight cutting edge research findings and perspectives, from both established leaders and junior trainees, on DNA repair mechanisms. In particular, the authors provided an updated understanding on several distinct enzymes (e.g., DNA polymerase beta, DNA polymerase theta, DNA glycosylase NEIL2) and the associated molecular mechanisms in base excision repair, nucleotide excision repair, and microhomology-mediated end joining of double-strand breaks. In addition, genome-wide sequencing analysis or site-specific mutational signature analysis of DNA lesions from environmental mutagens (e.g., UV light and aflatoxin) provide further characterization and sequence context impact of DNA damage and mutations. This SI is dedicated to the legacy of Dr. Samuel H. Wilson from the U.S. National Institute of Environmental Health Sciences at the National Institutes of Health.


Assuntos
Aniversários e Eventos Especiais , Reparo do DNA , Reparo do DNA/genética , Dano ao DNA/genética , DNA/genética , Mutação , Reparo do DNA por Junção de Extremidades
17.
Biotechnol J ; 19(4): e2400114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622790

RESUMO

Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.


Assuntos
DNA , Escherichia coli , Escherichia coli/genética , RNA Ribossômico 16S , Clonagem Molecular , Plasmídeos , DNA/genética , Vetores Genéticos
18.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578532

RESUMO

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Assuntos
Imunoterapia , Neoplasias , Nucleotidiltransferases , Humanos , Antivirais , DNA/genética , Imunidade Inata , Interferons , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
19.
PLoS One ; 19(4): e0300383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574082

RESUMO

Threatened shark species are caught in large numbers by artisanal and commercial fisheries and traded globally. Monitoring both which shark species are caught and sold in fisheries, and the export of CITES-restricted products, are essential in reducing illegal fishing. Current methods for species identification rely on visual examination by experts or DNA barcoding techniques requiring specialist laboratory facilities and trained personnel. The need for specialist equipment and/or input from experts means many markets are currently not monitored. We have developed a paper-based Lab-on-a-Chip (LOC) to facilitate identification of three threatened and CITES-listed sharks, bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus) and shortfin mako shark (Isurus oxyrinchus) at market source. DNA was successfully extracted from shark meat and fin samples and combined with DNA amplification and visualisation using Loop Mediated Isothermal Amplification (LAMP) on the LOC. This resulted in the successful identification of the target species of sharks in under an hour, with a working positive and negative control. The LOC provided a simple "yes" or "no" result via a colour change from pink to yellow when one of the target species was present. The LOC serves as proof-of-concept (PoC) for field-based species identification as it does not require specialist facilities. It can be used by non-scientifically trained personnel, especially in areas where there are suspected high frequencies of mislabelling or for the identification of dried shark fins in seizures.


Assuntos
Tubarões , Animais , Tubarões/genética , Espécies em Perigo de Extinção , Alimentos Marinhos , Carne , DNA/genética
20.
Methods Mol Biol ; 2801: 125-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578418

RESUMO

Connexins (Cxs) are transmembrane proteins which form hemichannels and gap junction channels at the plasma membrane. These channels allow the exchange of ions and molecules between the intra- and extracellular space and between cytoplasm of adjacent cells, respectively. The channel function of Cx assemblies has been extensively studied; however, "noncanonical" functions have emerged in the last few decades and have capture the attentions of many researchers, including the role of some Cxs as gene modulators or transcription factors. In this chapter, we describe a protocol to study the interaction of Cx46 with DNA in HeLa cells. These methods can facilitate understanding the role of Cxs in physiological processes and pathological mechanisms, including, for example, the contribution of Cx46 in maintaining stemness of glioma cancer stem cells.


Assuntos
Conexinas , Canais Iônicos , Humanos , Conexinas/genética , Conexinas/metabolismo , Células HeLa , Junções Comunicantes/metabolismo , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...